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You sell lollipops. Your profit, in dollars,
from selling g thousand lollipops is given

P(q) = q* — 32¢> + 2709% — 200

(a) Find all the critical values.
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11.1/2 Exponential and Logarithm Rule
Motivation - Recall from Math 111:

The functions y = e* and its inverse

y = In(x) are esséntial tools in finance.

Such as:

, A\t
Discrete Compounding: A = P (1 + ;)

Continuous Compounding: A = P e™

In both these formulas, you needed
logarithms to solve for time.

This quarter, we have learned that
derivatives are the key tools in analyzing
any function. So if we are going to learn
calculus for business, then we better also
learn derivatives of y = e* and y = In(x).
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Basic Facts:

1.y = e* isthe same as In(y) = x.
2.In(e*) =x and M =y
3.1=¢" and In(1) = 0.

4.(e*)? =e? and In(c?) = d In(c).

5.e% P = ¢2*b 3pnd

In(cd) = In(c) + In(d).
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Rules so far - Sum, Coeff., Prod., Quot., Examples: Differentiate
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which combine to make
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4. f(x) = (5x7 +e7*)10
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Note: There is a big, big difference
between a power function and an
exponential function

Power function: y=(f (x))n
(variable only appears in the base)
Exponential function: y = /()

(variable only appears in the elxponent)
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Combining with the chain rules gives

4 =9
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Examples: Differentiate

1.y = In(5x* — 3x2)
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Finding Derivatives (SAME AS BEFORE!)
Step 0: Rewrite powers and simplify.
Step 1: Product, Quotient or Chain?
Chain could look like:
(BLAH)", A1 or In(BLAH)

Step 2: Use appropriate rule, in the
middle of that rule you may need
to do a derivative (back to step 1)

Examples: Differentiate

1.y = In(2x + De>*
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2.h(t) = (In(3t* + 1))*°
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Quick Application

Find the global max and global min of

f(x) =In(100 + 8x — x*) - . ‘f-'}“"/
on the interval x =0 to x = 10. | | +.18
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